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Resumo

A sı́ntese de programas consiste em gerar automaticamente um programa a partir de uma especificação

usada para definir a intenção do utilizador. A plataforma OutSystems é uma plataforma de desenvolvi-

mento low-code que permite o desenvolvimento de aplicações através de uma interface gráfica.

A plataforma OutSystems permite que a lógica das aplicações seja implementada através de fluxos

de ações, que por sua vez podem ser usados para executar várias operações complexas e recorrentes,

tais como as operações de manipulação de dados. Para tal, as funções puras podem ser usadas em

expressões usadas pela linguagem OutSystems de forma a executar estas operações. As funções

puras são um tipo de função que não tem quaisquer efeitos secundários e o seu valor de retorno

é determinado pelos seus valores de input. Contudo, escrever este tipo de funções pode tornar-se

uma tarefa repetitiva e aborrecida devido à sua frequência, e pode ainda ser uma tarefa difı́cil para

utilizadores com menos experiência.

Neste documento apresentamos o PUFS, um sintetizador de funções puras, que dado um conjunto

de exemplos input-output, como especificação do comportamento da função desejada, sintetiza uma

função pura. A nossa solução consiste numa combinação entre sketches de programas como uma

representação parcial de uma função parcial e procura enumerativa em conjunto com Satisfazibilidade

Módulo Teorias (SMT), para preencher os sketches de programas de forma a obter a função com-

pleta. Avaliámos a nossa solução em instâncias do mundo real, mostrando resultados experimentais

promissores para muitas das funções puras recorrentes e comuns.

Keywords: Sı́ntese de Programas, Satisfazibilidade Módulo Teorias, Programação-por-Exemplo
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Abstract

Program synthesis consists in automatically generating a program from a specification used to define

user intent. The OutSystems platform is a low-code development platform which allows the development

of applications through a graphical user interface.

The OutSystems platform allows business logic to be implemented through action flows, which can

be used to perform several complex and recurrent operations, such as data wrangling operations. In

order to do this, pure functions can be used within OutSystems language expressions to perform these

operations. Pure functions are a type of functions that have no side-effects and their returned value is

determined by its inputs. However, writing this type of functions might become a tedious and repetitive

task due to its recurrence, and might even be a difficult task for less experienced users.

In this work we present PUFS, a pure function synthesizer that given a set of input-output examples,

as a specification of the function’s desired behavior, synthesizes a pure function. Our solution consists

of a combination between program sketches as a representation of a partial function and enumeration

based search alongside Satisfiability Modulo Theories (SMT) to fill the sketches in order to obtain the

complete function. The proposed solution was evaluated on a set of real-world examples, showing

promising results for recurrent and common pure functions.

Keywords: Program Synthesis, Satisfiability Modulo Theories, Programming-by-Example
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Chapter 1

Introduction

OutSystems platform is a low-code development platform which allows the development of applica-

tions through a graphical user interface. Its main goal is to provide an easier and faster experience

in development and integration of web and mobile applications. The OutSystems platform allows the

implementation of business logic using actions which can be used later in other action flows. An action

flow is a set of operations represented by nodes, such as access to a database, assignment of variables,

among others, that implements the logic of the application. Unlike regular action flows, action flows can

be used within OutSystems language expressions, making them a special case of these type of flows,

thus very useful to perform complex data transformations that are recurrent throughout the application.

Pure functions are a type of functions that have no side-effects, where the return value is only de-

termined by its input values, as in functions in traditional programming languages. Such functions can

be math functions, such as the cosine function, that given the same input always return the same output

value.

Although the platform provides an easier experience that abstracts the user from the code writ-

ing task, it also relies on the use of action flows to prevent the user from having to repeat the same

operations. Since the implementation of pure functions in these flows is a frequent element in every

application, it makes sense to develop an automation of this process.

Code generation has been one of the main recurrent research fields throughout the years, its relev-

ance has become higher and led to the appearance of new research fields and techniques, one of them

being program synthesis. Program synthesis consists in automatically generating a program that satis-

fies a specification provided by the user to express its intent, i.e., the desired behavior of the program.

It becomes clear that this technique can be quite useful in the context of our problem, since we want

to be able to facilitate the generation of these functions in the platform by some sort of automation, given

that these are recurrent tasks throughout the platform. However, providing such specification in program

synthesis may be a difficult task, as sometimes users know what a task should do, but do not know

how to express it a functional language. Given that, two main approaches for providing a specification

on a program’s desired behaviour have stood out: specifications as input-output examples and natural

language descriptions. In the first approach the user provides the desired output values for each input
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value, and for the second approach the user provides a description of the behavior of the program.

One of the main properties of pure functions is that their output is conditioned by the input. Hence,

we can see that the inputs have a great influence in the behavior of these functions. As such, we have

chosen an approach based on input-output examples as specification.

Having a specification in the form of input-output examples enables users with no specific knowledge

about a problem, to provide a specification that is accessible according to their knowledge base. As

such, they are easy to create and can be used in a wide range of problems. Furthermore, besides being

easy to create they also represent an specification that has a simpler implementation when it comes

to the synthesis process implementation, as in comparison to natural language based specifications for

instance. Although those might represent an easier specification to provide in some cases, it would

require a more complex solution. However the use of examples as a specification also comes with a

disadvantage: ambiguity of the solution, i.e., the synthesizer might be able to find a program that satisfies

the examples but the program does not correspond to the desired behaviour.

Pure functions in the action flows are not code fragments, and so they do not have the structure

of typical functions as in other programming languages. These functions are represented as a flow

of several nodes in which each node has an operation to be executed within the function. Therefore,

its representation might not be so straight forward for those who are more familiarized with a writing

approach. Due to the regularity of performing these tasks, as well as the characteristics that these type

of functions have, it makes sense to automatize this process using synthesis techniques.

1.1 Motivating Example

Suppose the user wants to synthesize a pure function by providing a set of input-output examples. In

particular, the user wants to synthesize a function that allows to calculate the price of an article with the

corresponding tax, given the price and the tax rate. If the price is less then zero then the price should be

returned as zero. If the price is greater than zero and as well as the tax rate the returned price should

be the price including the tax. If the price is greater than zero but the tax rate is not, then the price with

no tax applied.

However, for the user, this might not be a solution easy to come by, since the user might not have a

programming background or enough experience with the platform to know how to translate the desired

function in the form of a flow. To overcome this challenge, the user provides the specification using

input-output examples. A possible set of input-output examples for this specific case would be:

Table 1.1: Input-output examples for motivating example

Input Output

19.90, 0.23 24.477
-1.0, 0.23 0.00
-1.0, -0.23 0.00
1.50, -0.23 1.50
5.60, 0.06 5,936
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Figure 1.1: Motivating example of a pure function in the OutSystems platform

According to the provided specification, the synthesizer will try to find a program which given every

input will return the corresponding output. Figure 1.1 shows a possible solution in the platform for the

given specification.

1.2 Contributions

In this work, we survey the state of the art in program synthesis and implement a Programming-by-

Example-based Pure Function Synthesizer, PUFS, developed on the top of a state-of-the-art synthesis

framework Trinity [17] incorporated with the line representation present by Orvalho et. al as well as the

use of sketches as the underlying program representation [21]. The synthesizer employs a mixture of

Programming-by-Example with enumerative search. PUFS’ main goal is to synthesize pure functions

in the OutSystems platform from input-output examples. We gathered benchmarks from the real-world

and evaluated the performance of our synthesizer.

This thesis makes the following contributions:

• We propose a PBE-based program synthesizer whose goal is to solve the problem of synthesizing

pure functions in the OutSystems platform.

• We implement a tool named PUFS, which employs the use of sketches as a partial representation

3



of the programs and enumerative search to complete the partial programs in order to obtain the

complete programs.

1.3 Organization

This document is organized as follows. Chapter 2 presents the fundamental concepts and notations

used throughout the document. Chapter 3 provides some insights on related work such as Inductive

Synthesis (Section 3.1), Program Sketches (Section 3.2) and Enumeration-Based Program Synthesis

(Section 3.3).

Afterwards, Chapter 4 presents the proposed solution, the Pure Function Synthesizer PUFS, namely

its architecture and main components. Chapter 5 provides a description of the benchmarks used as well

as the evaluation methods and results at Section 5.2.

Finally, Chapter 6 presents the conclusions about the developed work and some possible future work.
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Chapter 2

Fundamental Concepts

This chapter provides a brief description of the fundamental concepts required in order to fully under-

stand the rest of this document. Some concepts about Program Synthesis in section 2.1 are presented,

such as its definition, dimensions and main challenges. Then, this chapter introduces and provides

some insights on Satisfiability Modulo Theories in section 2.2.

2.1 Program Synthesis

Given a specification used to express the user intent, program synthesis is the task of automatically

generating a program that satisfies that specification. Different types of specification include input-output

examples [1, 2, 6, 9, 20, 24, 31], logical formulas [14, 16] and natural language [2, 5, 31].

In program synthesis there are three main dimensions, as illustrated in Figure 2.1: expressing user

intent, program space and search techniques, which are described in more detail in sections 2.1.1, 2.1.2

and 2.1.3, respectively.

2.1.1 User Intent

As mentioned previously, to perform program synthesis there must be a way for the user to express his

intent. The user intent indicates the desired behavior of the program to be generated by the synthesizer.

Specification Given an input x and an output value y, a specification φ is the description of the user’s

intent, such that φ(x, y) is True if and only if y is the desired output value for x.

Despite all the progresses in program synthesis solutions, expressing user intent still remains a

significant challenge. The first approaches on program synthesis, such as deductive synthesis, required

the user intent to be expressed using a complete formal specification, which in most cases is harder

than writing the program itself.

Using a complete specification might become as challenging as the underlying programming task.

However, when not specific enough, there might be more than one program that satisfies the provided

5
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User Intent Program Space
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Figure 2.1: Program synthesis dimensions

specification and end up with a program that is not the desired one, due to the ambiguity of the specific-

ation.

The goal is to find an approach that allows finding the desired solution without the need for a very

complex specification, i.e., find a balance between the completeness and ease of formulation of the

specification.

2.1.2 Program Space

Once the specifications needed to express the user intent are provided, the synthesizer is now able to

perform a search over the program space in order to find the desired program.

Program Space is the space containing the set of all programs that can be written using a given pro-

gramming language.

The program space for a given programming language is infinite, which leads to another challenge:

the dimension of the program space. In order to tackle this challenge, one of the many possible ap-

proaches is to restrict the program space by imposing an upper bound on the number of lines or instruc-

tions that a program can have. However, the size of this restricted program space grows exponentially

as the upper bound grows or as more components are added to the language.

A possible approach to reduce the restricted program space is making use of a pruning technique,

such as domain-specific heuristics, restricting the program space using some program complexity met-

rics such as size or restrict the programs language using a Domain-Specific Language (DSL).

Domain-Specific Language defines both the syntax and the semantics of the language in which the

synthesized programs are written, providing the appropriate notions and abstractions for a particular

domain or problem.

2.1.3 Search Techniques

In order to find the intended program, one needs to search the program space for a program that satisfies

the specification. The specification and the knowledge about the context of the problem are used in order

6
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Figure 2.2: Enumerative search program synthesis

to guide the search process. To do so, there are four main search techniques in program synthesis,

which are described in more detail in this section.

Enumerative Given a specification and a Domain Specific Language (DSL), the enumerative based

approach consists in enumerating the programs that are in the search space using some heuristic to

define the order in which they are enumerated, which can be program size, complexity, among others.

Then, for each program, it checks if it satisfies or not the specification. In Figure 2.2 we can see an

illustration of the enumeration process.

The enumerator is responsible for enumerating the candidate programs. These candidate programs

are sent to a verifier which checks the consistency of the program according to the specification provided

by the user. If the program is consistent, then it is returned to the user; otherwise, the enumerator must

provide a new program to be verified.

Although this sounds very simple, an enumerative search approach may not scale up. Hence, it

is important to have some pruning or a good ranking technique, in order to perform the search of the

program space in a more efficient and effective way.

Deductive The deductive approach follows a top-down search and the divide-and-conquer technique.

The divide-and-conquer technique consists of recursively reducing the synthesis problem into simpler

sub-problems and combining the results of solving the sub-problems.

Given a synthesis problem of synthesizing an expression e of the form F (e1, e2) that must satisfy a

specification, it reduces the problem to simpler sub-problems e1 and e2 and finds a solution for each one

separately. The solution for both e1 and e2 is then combined to derive the desired expression e.

Constraint Solving This technique consists of two steps: constraint generation and constraint resol-

ution, as in [14]. Constraint generation consists of building a logic formula whose solution is a program

that satisfies the specification. According to Gulwani et.al [15], there are 3 main kinds of methods for

constraint generation: invariant-based, path-based, and input-based.

Constraint resolving consists of solving the logical constraints generated during the constraint gen-

eration phase, which usually is achieved by the use of a Boolean Satisfiability (SAT) or a Satisfiability

Modulo Theory (SMT) solver. SMT is explained in more detail in section 2.2.

Statistical Statistical techniques make use of machine learning, genetic programming, Markov Chain

Monte Carlo (MCMC) sampling or probabilistic inference. Machine Learning is mainly used to support

7



other search techniques such as enumerative search and deduction, by learning an heuristic to guide the

search. On the other hand, given an initial program, MCMC is used to search for the desired program,

by making some local changes which allow to obtain a program that is a optimized version of the initial

candidate.

Genetic programming, as the name indicates, is based on the biological evolution process where

programs are treated as individuals in a population and evolved through the use of genetic operators.

This evolution is achieved by mutation and/or crossover of a said population of individual programs.

Mutation introduces random changes in the program, while crossover shares pieces of code among the

programs in the population.

2.2 Satisfiability Modulo Theories

Given a set of Boolean variables, a propositional formula ϕ in Conjunctive Normal Form (CNF), is a

conjuntion of clauses, where each clause is a disjunction of literals. A literal can be a variable x or its

complement ¬x. A unit clause is a clause with a single literal.

Given a propositional formula ϕ with n variables, the Propositional Satisfiability (SAT) problem con-

sists in deciding whether there exists an assignment to the variables that satisfies ϕ.

The Satisfiability Modulo Theories (SMT) problem is a generalization of SAT. Solvers that use SMT

check the satisfiability of first-order logic formulas with use of theories such as theory of real numbers,

theory of integer arithmetic, theory of strings.

The set of predicate and function symbols, each with an non-negative arity, corresponds to a signa-

ture Σ = ΣF ∪ΣP , where ΣF represents the function symbols and ΣP represents the predicate symbols.

Predicates with 0-arity are called propositional symbols, and functions with 0-arity are called con-

stants.

A term t is defined as:
t ::= c

| f(t1, ..., tn)

| ite(ϕ, t1, t2)

(2.1)

Where c and f are in the set of function symbols with arity 0 and arity n > 0 respectively and ite

corresponds to if-then-else.

A formula ϕ is defined as:

ϕ ::=A

| p(t1, ..., tn)

| t1 = t2| ⊥ |> | ¬ϕ1

|ϕ1 → ϕ2 |ϕ1 ↔ ϕ2

|ϕ1 ∨ ϕ2 |ϕ1 ∧ ϕ2

(2.2)
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Where A and p are in the set of predicate symbols with arity 0 and arity n > 0 respectively.

Considering a theory T , a T -atom is a ground atomic formula in T of the form A, p(t1, ..., tn), t1 = t2,

⊥, >.

On the other hand, a T -literal is a T -atom a or its complement (¬a) and a T -formula is composed of

T -literals.

Given a signature Σ = ΣF ∪ ΣP , where ΣF represents the function symbols and ΣP represents the

predicate symbols, a Σ-model M is composed by M , a non-empty set which represents the universe of

the model, and a mapping function ( )M which maps each constant a ∈ ΣF to an element aM ∈M , each

function f ∈ ΣF with arity n > 0 to a total function fM : Mn →M , each propositional symbol A ∈ ΣP to

an element AM ∈ {true, false}, each p ∈ ΣP with arity n > 0 a total function pM : Mn → {true, false}.

Satisfiability in SMT SMT focuses on models that belong to a given theory T that constrains the

interpretation of the symbols in Σ.

Given a modelM, the model satisfies a formula ϕ if ϕ is true for the semantics.

A formula ϕ is T -satisfiable, i.e. satisfiable in a given theory T , iff there is an element of T that

satisfies ϕ.

For given a theory T , a formula ϕ is T -satisfied by a modelM if the model satisfies ϕ and T .

So, given a T -formula, the SMT problem consists of deciding if there is an assignment of the variables

of ϕ such that ϕ is satisfied.

Example 1. Consider that T is the Linear Integer Arithmetic (LIA) theory.

φ = (x+y > 2)∧(x > 4)∧(y < 1), is and example of an SMT formula in LIA, where x and y are integers.

We can see that φ is satisfiable and a possible solution would be x = 5, y = 0.
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Chapter 3

Related Work

In this chapter we discuss previous work related to this project. We focus in three main areas of program

synthesis, namely inductive synthesis (3.1), with more emphasis on programming-by-example, program

sketches (3.2) and enumeration-based program synthesis (3.3).

3.1 Inductive Synthesis

As described in section 2.1.1, expressing user intent might reveal to be a challenging task. Deductive

synthesis approaches require the user intent to be provided as a complete formal specification, which

in most cases is as demanding as writing the program itself. The process of generating a program from

high-level formal specifications is called formal synthesis.

The need to make formal synthesis methods simpler led to the appearance of new inductive syn-

thesis approaches based on inductive specifications such as input-output examples, like the FlashMeta

framework for inductive program synthesis [23], which allows synthesizer developers to generate effi-

cient synthesizers from a DSL definition.

3.1.1 Programming-by-Example

Programming-by-Example (PBE) is a sub-field of program synthesis that focuses on input-output ex-

ample based specifications.

One of PBE’s main goals is automating certain classes of programming tasks, which has proven

extremely useful for end-users since it is easier to provide examples rather than a formal specification of

the constraints, but also very useful to developers since it provides a tool for automating repetitive and

tedious programming tasks in the form of informal specifications.

This approach is used in a wide range of domains, such as automating manipulations in spread-

sheets like FlashFill [10], which allows users to quickly perform repetitive string manipulations in Excel

by providing a very small set of examples of the expected behavior, without the need to write complex

macros. Other examples include automating data preparation tasks [2, 7, 9, 17], regular expression

synthesis [31], and SQL queries [30, 32].
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Example 2. The following set of input-output examples specifies the behavior of a program that receives

as input a list of integers, and returns a list with the even values in the list.

Input Output

[1, 2, 5, 8] [2, 8]

[1, 3, 11] [ ]

[2, 10, 22] [2, 10, 22]

Input-output examples enjoy a set of unique properties which sets PBE apart as a separate sub-

field of program synthesis. These properties are ease of use and ambiguity of the specification. As

mentioned before, this approach provides the user a simpler and easier way to specify user intent for a

given program, but they are also simpler to explain and verify, which is the reason why this is an ideal

approach for users without programming background.

But, alongside the ease of use, comes the ambiguity of the provided solutions. PBE is highly de-

pendent on the quality of the provided examples, increasing the likelihood of obtaining several programs

that satisfy the input-output examples but do not accurately capture the user intent, which may lead to

an increasing program space. Which leads us to some of the main program synthesis challenges: am-

biguity resolution, since we do not want to just find any program that satisfies the input-output examples

but the intended one.

3.1.2 Ambiguity Resolution

One of the main characteristics in PBE, aside from the ease of use, is the ambiguity. Given a set of input-

output examples, there might exist more than one program that is consistent with the examples, but does

not satisfy the user intent, which is why examples are considered an under-specification. Therefore, it is

important to establish a criteria for choosing a program from a given pool of candidates that satisfy the

specification. To do so, two main solutions have been proposed [12]: Ranking [13, 23, 26] and Active

Learning [11, 18].

Ranking Given a set of programs that are consistent with the examples, this approach performs a

ranking of the programs according to their likelihood of corresponding to the user’s intent and assigns a

score to each one. In the end, the chosen programs correspond to the ones with the highest score.

Active Learning Is a common approach when the synthesizer finds more than one program that is

consistent with the examples. Given two candidate programs, distinguishing inputs consist of using an

input that produces a different output for each program, then ask the user which produced output is

the correct one and discard the other program. Once the user selects the intended program the new

input-output pair is added to the examples set. This technique is based on interaction with the user, in

order to disambiguate between 2 candidate programs.
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3.2 Program Sketches

One approach that has become very popular in program synthesis is the use of partial programs, also

known as program sketches, to write code automatically [9, 20], data wrangling tasks [2], facilitate the

use of software libraries [25], training neural networks [19] and solving component based synthesis

problems [7, 24].

3.2.1 Sketch-based Program Synthesis

Solar-Lezama introduced an approach which allows the user to provide its specifications through a

partial program referred to as sketch [27, 29].

A sketch expresses the high-level structure of an implementation but has holes which represent the

low-level details. The key idea is to create an abstraction from the source code that clearly defines the

semantics but not the syntax, this is, the sketch abstracts out names and operations from a program,

but keeps the program’s structure, the order in which it executes methods, types of arguments and its

return values. This approach is know as programming with sketches [28].

Example 3. Program illustrating basic structure of a sketch.

void main ( i n t x ){

i n t y = x ∗ ??;

asser t y == x + x ;

}

The above example demonstrates the basic structure of a sketch, composed by three elements: a

main procedure main, holes ?? and assertions assert y == x + x. The assertions encode the specific-

ation of the intended behavior. These express the properties which the synthesized program should

satisfy for all possible inputs. The holes are then replaced with values that ensure the correctness of the

generated program.

In program synthesis, we have already seen that the use of examples as a specification can be very

useful. Among the various types of programming-by-examples approaches we have seen, sketches can

be used to guide the structure of the intended implementation.

Also, it allows the user to focus on the algorithmic properties of the implementation rather than

the low-level details. Solar-Lezama et al. [28] show that this approach improves the productivity and

performance of programming tasks.

The sketch-based synthesis process can be split in two stages: sketch generation and sketch com-

pletion, as illustrated in Figure 3.1. The first process consists in generating a sketch, using an automated

sketch generation technique [8], in which the synthesizer enumerates the sketches according to some

complexity metric, such as the sketch size, and a given DSL. Followed by the filling of the holes, with the

use of a synthesizer to fill each hole with an according expression in order to generate a complete pro-

gram, which corresponds to the sketch completion stage. This process is repeated until a valid solution

is found according to the given specification.
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Figure 3.1: Sketch-based program synthesis
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Specification

Desired
ProgramSuccess

Figure 3.2: Counterexample guided inductive synthesis

3.2.2 Counterexample Guided Inductive Synthesis

Along with the skecth Solar-Lezama proposed a new synthesizer, which uses a technique known as

Counterexample Guided Inductive Synthesis (CEGIS) [27].

As shown in Figure 3.2 the enumerator starts by providing a candidate program which is then verified

against the specification. If the verification succeeds, i.e. the candidate program satisfies the input-

output examples, the program is considered correct, and is returned to the user. If the verification fails,

the verifier checks if there exists an input for which the specification is not satisfied; if it exists, the

verifier sends the corresponding input-output pair as a counterexample to the enumerator. After some

iterations, the synthesizer will have enough counterexamples in order to return a valid candidate which

will be accepted and returned by the verifier to the user.

3.3 Enumeration-Based Program Synthesis

There exist several approaches to program synthesis, one of the most common being enumeration-

based search. This technique consists of performing a search over the space of all candidate programs

that can be generated from a given DSL [2, 9, 17, 21, 31]. The enumeration prioritizes programs accord-

ing to some heuristic and returns the first program that satisfies the specification provided by the user.

This technique is frequently used in many state-of-the-art synthesizers that also rely on logical deduction

[2, 17, 22], where the space of candidate programs is encoded using either Boolean Satisfiability (SAT)

or Satisfiability Modulo Theories (SMT).

As shown in Figure 2.2 the enumeration-based technique has two main components: an enumerator

and a decider. The enumerator enumerates all the possible programs for a DSL given as input. For each

enumerated program the decider will evaluate if it satisfies the specification provided by the user. For
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+

price ε*

tax rate price ε ε ε ε ε ε ε

Figure 3.3: Formula Price+ (Price ∗ TaxRate) from motivating example in Section 1.1 as a k-tree.

final price*

tax rate price ε price L1 ε

Line 2 (L2)Line 1 (L1)

Figure 3.4: K-tree from Figure 3.3 represented as lines using the line-based representation.

the particular case of PBE, this evaluation performed by the decider is done by executing the enumer-

ated program using the input examples and checking if the output matches the corresponding output

examples. If the output does not match the expected one we consider that program to be infeasible.

3.3.1 Line-based Encoding

This section describes the line-based encoding proposed by Orvalho et. al. [21], based on the tree-

based encoding presented by Martins et. al. [17] used in the Trinity synthesis framework.

Given a DSL, Trinity enumerates candidate programs in order to find a program that is consistent with

the input-output examples provided by the user. To perform this search, it uses a structure capable of

representing all the candidate programs for a given DSL. For that purpose, each program is represented

using a tree structure referred to as k-tree of depth n, where each node has exactly k children, k

being the greatest arity among the DSL constructs. Figure 3.3 illustrates the tree representation of

the formula used to calculate the price with the tax rate in the pure function shown in the motivating

example presented in section 1.1 as a k-tree, given a DSL where the greatest arity among all operators

is 3.

The enumeration is performed in order of increasing complexity, i.e., the enumerator enumerates the

trees in an increasing depth order as trees of smaller depths are exhausted. So the more complex the

program to synthesize the bigger the depth of the tree representing that program.

The encoding proposed by Orvalho et. al. [21] represents a program as a sequence of lines where

each line represents an operation from the DSL. In this case, each line is represented using a k-tree of
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depth one, rather than having one single k-tree representing the complete program. Using this encoding

the tree representation used in figure 3.3 would turn into the representation illustrated in figure 3.4. So

the tree that was previously a 3-tree of depth 2 is now represented using two 3-trees of depth 1. This

representation allows for more complex programs to be represented using less nodes given to the fact

that each k-tree can be used as an argument of other trees. Therefore the line-based approach scales

better than the tree-based representation in Trinity.

Although there are other possible tree-representations such as binary trees or rose trees, the binary

tree representation has exactly 2 children so it limits the greatest arity of the operators in the DSL to

be 2. As for rose-trees, which have an unbounded number of children per node, these do not have an

encoding in SMT and do not provide an advantage in comparison to the use of k-trees for a known DSL.

For those reasons we focused in applying k-tree based encodings for the purpose of this dissertation.

To perform the enumeration of programs using a tree representation, the synthesizer encodes the

tree as an SMT formula such that a model for that formula corresponds to a concrete program by

assigning a symbol of the DSL to each node. The SMT encoding of the trees follows.

3.3.2 Encoding Variables

Let D be the DSL, Prod(D) the set of production rules in D and Term(D) the set of terminal symbols

in D. Furthermore, Types(D) represents the set of types used in D and Type(s) the type of symbol

s ∈ Prod(D)∪Term(D). If s ∈ Prod(D), then Type(s) corresponds to the return type of production rule

s.

Consider a program with n lines, where the maximum arity of the operators used in the expressions

is k, we have the following variables:

• O = {opi : 1 ≤ i ≤ n} : each variable opi represents the production rule used in line i;

• T = {ti : 1 ≤ i ≤ n} : each variable ti represents the return type of line i;

• A = {aij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} : each variable aij represents the symbol corresponding to

argument j in line i;

To ensure the enumerated programs are well-typed we need to add the constraints in the following

section.

3.3.3 Constraints

Let Σ denote the set of all symbols that may appear in the program. Besides the production rules and

terminal symbols, we introduce one additional symbol ret for each line in the program. Let Ret = {reti :

1 ≤ i ≤ n} represent the set of return symbols in the program, then Σ = Prod(D) ∪ Term(D) ∪Ret.

Furthermore, each symbol is assigned a unique positive identifier. Let id : Σ → N0 be a one-to-one

mapping function that maps each symbol in Σ to a unique positive identifier and tid : Types(D)→ N0 be

a one-to-one mapping function that maps each symbol type to a unique positive identifier. Finally, since
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some operations in the DSL have a smaller arity than k, the empty symbol ε is introduced, so that every

leaf node has an assigned symbol. We assume id(ε) = 0.

Operations. The operations in each line must be production rules.

∀ 1 ≤ i ≤ n :
∨

p∈Prod(D)

opi = id(p) (3.1)

The return type of each line is the same as the return type of its production rule.

∀ 1 ≤ i ≤ n, p ∈ Prod(D) : (opi = id(p)) =⇒ (ti = tid(Type(p))) (3.2)

Arguments. The arguments of an operation i must be either terminal symbols or return symbols from

previous lines.

∀ 1 ≤ i ≤ n, 1 ≤ j ≤ k :
∨

s∈Term(D) ∪ {retr:r<i} ∪ ε

aij = id(s) (3.3)

The arguments of an operation i must have the same types as the respective parameters of the

production rule used in the operation. Let Type(p, j) be the type of parameter j of production rule p,

where p ∈ Prod(D). If j > arity(p) then T (p, j) = ε.

∀ 1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p), 1 ≤ r < i :

((opi = id(p)) ∧ (aij = id(retr))) =⇒ (tr = tid(Type(p, j)))
(3.4)

A terminal symbol t ∈ Term(D) cannot be used as argument j of an operation i if it does not have

the correct type:

∀ 1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p),

s ∈ {r ∈ Term(D) : Type(r) 6= Type(p, j)} :

(opi = id(p)) =⇒ ¬(aij = id(s))

(3.5)

The arity of an operation i can be smaller than k, in that case, the empty symbol is assigned to the

arguments that exceed the production’s arity.

∀ 1 ≤ i ≤ n, p ∈ Prod(D), arity(p) < j ≤ k :

(opi = id(p)) =⇒ (aij = id(ε))
(3.6)

Output. Let Type(out) denote the type of the program’s output and Pout ⊆ Prod(D) be the subset

of productions rules which return type matches Type(out), i.e., Pout = {p ∈ Prod(D) : Type(p) =

Type(out)}. Since the last line (nth line) corresponds to the program’s output, the operation of the last

line must be one of the productions in Pout.

∨
p∈Pout

(opn = id(p)) (3.7)
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Input. Let I be the set of symbols provided as input by the user. We want to guarantee that all the

inputs provided by the user are used in the generated programs.

∀s ∈ I :
∨

1≤i≤n

∨
1≤j≤k

(aij = id(s)) (3.8)
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Chapter 4

Pure Function Synthesis

This chapter presents PUFS, a PBE-based Pure Function Synthesizer, developed using an enumeration-

based approach, both for enumerating programs as well as sketches. We start by providing a brief in-

troduction to the OutSystems platform, as well as a description of the problem (Section 4.1), followed

by the description of the enumeration-based sketch generation approach (Section 4.2) and the sketch

completion approach (Section 4.3) as well as all the techniques used in its components.

4.1 Problem Formulation

This thesis was developed within the context of the OutSystems1 platform. OutSystems is a low-code

development platform which provides a graphical user interface for the development of mobile and web

applications, while allowing easy integration with other existing systems and the use of traditional textual

programming (e.g. JavaScript, SQL) when needed. Its main goal is to enable an easier and faster

development experience of enterprise-level applications.

In the OutSystems platform, business logic is defined using action flows. Pure functions are one

type of action flow that produces an output given a set of inputs. These functions are characterized for

having no side-effects and can be used within OutSystems expressions, which makes them useful for

performing complex data transformations that are recurrent throughout the application.

An OutSystems expression is composed by operands and operators. The operands can be a lit-

eral (e.g. strings, numbers, boolean values, etc.), any element available in the scope of the current

expression, such as local variables, or function calls, or sub-expressions. The operators can be of type

numeric, logic and Boolean, among others. However, in this work we are focusing on synthesizing pure

functions that use built-in types2 such as Integer, Decimal, Text and Boolean only, although there are

others, and built-in functions3 such as Math, Numeric and Text only, described in table 4.1.

Table 4.1: Description of the built-in functions used for synthesis

1https://www.outsystems.com
2https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Data/Data_Types/

Available_Data_Types
3https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Logic/Built-in_Functions
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Built-In Function Description Example

+(n:Value, m:Value)
Returns the sum between

n and m.

2 + 1 = 3

1.3 + 0.5 = 1.8

”ab” + ”c” = ”abc”

-(n:Number, m:Number) Returns n minus m.
2 - 1 = 1

1.3 - 0.5 = 0.8

*(n:Number, m:Number) Returns n times m.
2 * 1 = 2

1.3 * 0.5 = 0.65

/(n:Number, m:Number) Returns n divided by m.
2 / 1 = 2.0

1.3 / 0.5 = 2.6

>(n:Value, m:Value)
Returns the result of the logical

operation > between n and m.

2 > 1 = True

-0.1 > 0.5 = False

”ab” > ”c” = True

<(n:Value, m:Value)
Returns the result of the logical

operation < between n and m.

2 < 1 = False

-0.1 < 0.5 = True

”ab” < ”c” = False

>=(n:Value, m:Value)
Returns the result of the logical

operation >= between n and m.

2 >= 1 = True

0.3 >= 0.5 = False

”ab” >= ”cd” = True

<=(n:Value, m:Value)
Returns the result of the logical

operation <= between n and m.

2 <= 1 = False

0.3 <= 0.5 = True

”ab” <= ”cd” = True

=(n:Value, m:Value)
Returns the result of the logical

operation = between n and m.

2 = 1 = False

0.3 = 0.3 = True

”ab” = ”ab” = True

<>(n:Value, m:Value)
Returns the result of the logical

operation <> between n and m.

2 <> 1 = True

0.3 <> 0.3 = False

”ab” <> ”ab” = False

and(n:Boolean, m:Boolean)
Returns the result of the logical

operation and between n and m.

True and False = False

5 > 2 and 1 < 2 = True

or(n:Boolean, m:Boolean)
Returns the result of the logical

operation or between n and m.

True or False = True

5 > 2 or 1 < 2 = True

Abs(n:Decimal) Returns the absolute value of n. Abs(-10.2) = 10.2

Mod(n:Decimal, m:Decimal)
Returns the remainder of

n divided by m.

Mod(10, 3) = 1

Mod(4, 3.5) = 0.5

Power(n:Decimal, m:Decimal) Returns n raised to

the power of m.
Power(100, 2) = 10000

Power(-10.89, 2.3) = 0

Round(n:Decimal, m:Integer)

Returns the Decimal number n

rounded to a specific number of

fractional digits.

Round(-10.89) = -11

Round(-5.5) = -6

Round(9.3) = 9

Round(9.123456789, 4) = 9.1235

Sqrt(n:Decimal) Returns the square root of n. Sqrt(2.3) = 1.51657508881031

Trunc(n:Decimal)

Returns the Decimal number n

truncated to integer by removing

the decimal part of n.

Trunc(-10.89) = -10

Trunc(7.51) = 7
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Max(n:Decimal, m:Decimal)
Returns the largest number

between n and m.

Max(-10.89, -2.3) = -2.3

Max(10.89, 2.3) = 10.89

Min(n:Decimal, m:Decimal)
Returns the smallest number

between n and m.

Min(-10.89, -2.3) = -10.89

Min(10.89, 2.3) = 2.3

Sign(n:Decimal)

Returns -1 if n is negative;

1 if ’n’ is positive;

0 if ’n’ is 0.

Sign(-10.89) = -1

Sign(2.3) = 1

Sign(0.0) = 0

Chr(c:Integer)

Returns a single-character

string corresponding to the

c character code.

Chr(88) = ”X”

Concat(t1:Text, t2:text)
Returns the concatenation of

two Texts: t1 and t2

Concat(”First string”, ”last string”) =

”First stringlast string”

Concat(””, ””) = ””

Length(t:Text)
Returns the number of

characters in Text t.

Length(”First string”) = 12

Length(””) = 0

Replace(t1:Text, t2:text, t3:Text)
Returns Text t1 after replacing

all Text occurrences of t2 with t3.

Replace(”Hello”, ”xx”, ””) = ”Hello”

Replace(”Hello world”, ”Hello”, ”Bye”) = ”Bye world”

Replace(”Hello world”, ”Hello”, ””) = ” world”

Substr(t:Text, pos:Integer, len:Integer)

Returns a sub-string of t beginning

at pos zero-based position

and with len characters.

Substr(”First string”, 2, 4) = ”rst ”

Substr(”First string”, 0, 100) = ”First string”

Substr(”First string”, 11, 3) = ”g”

Substr(”First string”, Length(”First string”), 0) = ””

Substr(”First string”, 2, 0) = ””

ToLower(t:Text)
Converts Text t to the

equivalent lowercase text.
ToLower(”Hello”) = ”hello”

ToUpper(t:Text)
Converts Text t to the

equivalent uppercase text.
ToUpper(”Hello”) = ”HELLO”

Trim(t:Text)

Removes all leading and trailing

space characters (’ ’) from

Text t.

Trim(” Hello ”) = ”Hello”

Trim(”Hello ”) = ”Hello”

TrimEnd(t:Text)
Removes all trailing space

characters (’ ’) from Text t.

TrimEnd(” Hello ”) = ” Hello”

TrimEnd(”Hello ”) = ”Hello”

TrimStart(t:Text)
Removes all leading space

characters (’ ’) from Text t.

TrimStart(” Hello ”) = ”Hello ”

TrimStart(”Hello ”) = ”Hello ”

Although there are more built-in types and built-in functions supported by the platform, we start by

trying to synthesize functions that contain the ones mentioned before so that we start by evaluating our

synthesizer on a smaller set of options and consequently on simpler programs. So that afterwards, using

the results of the evaluation of our synthesizer using this set of types and functions we are able to better

decide on how to improve our solution and if it is feasible to include more types and functions without

compromising performance. This selection was made based on this and also on the fact that a lot of the

instances retrieved from the real-world frequently used these functions and types.

We are mainly focused in synthesizing pure functions, but for the scope of this thesis we are fo-

cused on the ones with just conditional expressions in form of If statements and assignment expressions

without loops. The assignment expressions assign a value to a given variable. On the other hand, If
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Figure 4.1: Example of flow in Service Studio component of OutSystems platform

statements consist of an expression to be evaluated in order to condition the control-flow of the func-

tion. Synthesis of functions containing loops was not considered due to the fact that this will be a novel

approach in synthesizing pure functions in the OutSystems platform, i.e., there isn’t a solution for this

problem that allows to do so in the present, and as such we will start by trying to synthesize simpler

functions to verify if is possible to improve to more complex functions.

In Figure 4.1 we illustrate an example of a flow that represents a pure function with an “if” node,

which evaluates an expression to check if an input value is greater than or equal to zero, followed by two

assignment nodes. If the input is greater than or equal to zero the assignment node Positive Result will

assign the value 1 to the output value, otherwise the assignment node Negative Result will assign the

value 0 to the output value.

The goal of this thesis is to synthesize this type of functions using program synthesis, from an input-

output example based specification. Since pure functions return an output from a given set of inputs,

these represent an appropriate candidate to apply this technique. These input-output examples repres-

ent the expected behavior of a flow.

Let (xi, yi) be input-output pairs in a set of N input-output examples X . The goal is to synthesize f

such that: ∧
(xi,yi)∈X

f(xi) = yi (4.1)

Example 4. Assuming we wish to synthesize the flow in figure 4.1 with a Start node, an If node , two

Assign nodes and an End node, where the goal is, given an integer as input, to return 1 if the integer is

greater than or equal to zero and 0 otherwise. A possible set of input-output pairs is:

Table 4.2: Possible input-output examples for example flow in figure 4.1

Input Output

100 1
-10 0
0 1

-57 0

The user provides an input file containing both the specification, in the form of input-output examples.
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Figure 4.3: Partial flow example

The structure of the input file and assemble of the DSL is further described in subsection 4.3.1.

In order to simplify the synthesis task sketches are used. We follow a two-stage approach consisting

of sketch generation and sketch completion, further described in section 4.2 and section 4.3 respectively.

During the sketch generation phase we generate the partial flows to be completed with the during the

sketch completion phase, in order to get a complete flow corresponding to a program. These partial

flows consist of flows with holes in place of the expressions of each Assign and If node. A flow is

considered correct if, once complete, it returns the expected output for the respective input for all the

input-output pairs given as specification. If a valid solution is not found, i.e., it is not valid according to

the input-output examples, then the synthesizer tries to find a solution using another sketch and so on.

The overview of the architecture of our framework is illustrated in figure 4.2.

4.2 Sketch Generation

The sketch generation consists in generating a sketch of a flow, i.e., a flow with holes in place of the

assignment and If node expressions as illustrated in figure 4.3. This generation process consists of a

enumerative approach that enumerates several sketches up to a pre-specified size. The size of a flow

corresponds to the number of nodes in that flow.

In our approach, graphs are used as a representation of the flows, since a flow is akin to the control-
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Figure 4.4: Enumeration of sketches given the desired size of the flow

flow graph of an application. Given that, we consider a flow to be a graph. Also, the graphs allow us

to have a representation that gathers all the necessary information to enumerate the sketches, such as

the neighborhood of each node, which expression is associated to the node, among others. Therefore,

in this section, when we refer to a flow, we refer to its structure as a graph. We consider the size of a

flow to be the number of nodes of the corresponding graph. Figure 4.4 shows the sketches that would

be generated for a fixed size of 5.

Given the desired size of the flow, the enumerator follows a recursive approach conditioned by the

current size of the flow and the desired final size. We consider 5 possibilities, that correspond to when

there are 0, 1, 2, 3 or more nodes away from reaching the desired flow size.

At each step of the recursion we check if there are If and non-If free nodes. Free nodes correspond

to nodes which have no outgoing edges. We consider non-If free nodes to be nodes of type Start or

Assign that have no outgoing edges and If free nodes to be If nodes with at most one outgoing edge or

none, since If nodes must have 2 outgoing edges corresponding to the ”True” and ”False” edges. Both

possibilities are shown in figure 4.5.

Figure 4.5: Free nodes possibilities.

In order to distinguish between the edges that connect Assign nodes and If nodes, the edges have
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an attribute ’kind’ which has 3 possible values: ’Connector’ representing the outgoing edges of non-If

nodes, and the values ’True’ and ’False’ to represent the outgoing edges of If nodes.

At each new recursive step we check how many nodes are missing in the current graph in order to

achieve the desired size. Then, based on the size of the current graph and the corresponding free nodes

we add the possible nodes among Assign, If and End nodes. At the end of each step a new recursion

begins using the updated graphs.

More than 3 nodes. If more than 3 nodes are missing, the enumerator generates the possible flows

that result from adding 1 Assign node, or 1 If node to any non-If node or If node with no outgoing edges,

as illustrated in figure 4.6. Despite not being represented in the figure, the non-If nodes include the Start

Node. The same applies for the False branch scenarios for the If nodes. This applies to the following

examples in this section.

Figure 4.6: Sketch enumeration phase when there are more than three nodes left to reach the size limit
of the sketch.

3 Nodes. When there are 3 nodes missing, it generates the possible flows by adding 3 Assign nodes

or adding 1 If node with branches to Assign nodes. For If free nodes it also generates the flow with 2 or

3 more assign nodes connected to the free If node, or adds an If node with branches to Assign nodes.

All these possibilities are illustrated in figure 4.7. The possibility of adding a If node with branches to

two other If nodes is not considered in this case. Since there are only 3 nodes missing to reach the

size of the flow, by adding 3 If nodes, the only remaining possibility would be to connect all the branches

from those nodes to an End node. Therefore, in practice, adding those nodes would not represent any

additional functionality to the function itself.

2 Nodes. When 2 nodes are missing there are two possibilities, either add 2 Assign nodes or add 1 If

and 1 Assign node. Both options are illustrated in figure 4.8. The possibility of adding 2 If nodes is not

considered in this case. Since there are only 2 nodes missing to reach the size of the flow, by adding

2 If nodes, the only remaining possibility would be to connect all the branches from those nodes to an
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Figure 4.7: Sketch enumeration phase when there are three nodes left to reach the bound

End node. Therefore, in practice, adding those nodes would not represent any additional functionality

to the function itself. The possibility of adding 1 If Node and 1 Assign node to and If free node is not

considered as well, for the same reasons mentioned before.

Figure 4.8: Sketch enumeration phase when there are two nodes left to reach the bound

1 Node. When 1 node is missing, the enumerator prioritizes the extensions of conditional nodes. If it

finds If free nodes, the next step is to check if there are any If nodes with no outgoing edges in order

to create an edge between the existing If and an existing Assign node. Otherwise, it just adds a new

Assign node to the free If node. When there are non-If free nodes we simply create a branch from the

free node to a new Assign node. All the mentioned combinations are illustrated in figure 4.9.
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Figure 4.9: Sketch enumeration phase when there is one node left to reach the bound

0 Nodes. When there are no nodes missing, i.e., the size of the current graph is the same as the size

limit for the sketch, the sketch enumerator searches for all the free nodes and creates an edge from

each of those free nodes to an End node, as illustrated in figure 4.10.

Figure 4.10: Sketch enumeration phase when the bound is reached

However, as the size of the flow increases so does the number of possible sketches generated, which

can lead to a lower performance of the generator since it has to enumerate more possibilities. In order to

overcome this challenge, a possible solution would be to apply symmetry breaking techniques in order

to reduce the number of sketches that have to be generated.

4.3 Sketch Completion

Once the sketch is generated, its holes must be filled in order to obtain a complete flow that corres-

ponds to a correct and valid pure function. Within the sketch completion process we have two main

components: the K-Tree Enumerator and the Decider.

During the sketch completion stage we enumerate several candidate programs, in the form of k-trees
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Figure 4.11: Overview of the PUFS synthesis process.

(section 4.3.2), from a given DSL, further described in section 4.3.1. Afterwards, we fill the sketch holes

and verify if the complete flow is consistent with all the input-output examples. If the flow is consistent

with the examples, we consider that a solution was found, otherwise, the sketch enumerator provides

another sketch and the process is repeated until a solution is found. This process is illustrated in figure

4.11

4.3.1 Input-Output Examples and Domain Specific Language (DSL)

In order to synthesize the expressions used to fill in the sketch holes, we need to define a DSL that

includes the definition of operators and values that can be used to build the desired program. These

operators and operands will form the expressions used to complete the sketch to obtain a complete

and valid flow. The set of operators and operands defined in the DSL contain the built-in functions and

built-in types mentioned before, along with arithmetic and logical comparison operators, as shown in

Table 4.1. However, there are components of the DSL that are defined based on the input file given by

the user. This file includes the following: the input-output examples, the number of inputs and outputs of

the desired program and constants.

Number of inputs and outputs of the desired program. The first line specifies the number of inputs

and outputs of the desired program, so that the DSL can be built according to that information.

Input-Output Examples. The second line contains the input-output examples to be used as specific-

ation for the synthesizer.

Constants. In the third and final line of the file, the user can provide constants to be used in the

program, in order to find a correct solution that contains those same constants, otherwise the synthesizer

does not search for those programs.
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Figure 4.13: Example AST of figure 4.12 as a k-tree.

4.3.2 K-Trees Enumeration

Once the input file, with the input-output examples, along with the DSL are provided, the enumeration of

the candidate programs takes place. The enumeration of the candidate programs is guided by a sketch,

i.e., the sketch is the flow’s graph with holes instead of expressions.

As mentioned before in section 3.3, in order to perform the enumeration of candidate programs, we

need to use a structure that is capable of representing every possible program in the DSL. Programs

are often represented using their Abstract Syntax Tree (AST) representation.

An Abstract Syntax Tree (AST) is a tree representation of the syntactic structure of a program, where

each internal node represents an operator, and the children represent the respective operands. For

instance, the AST shown in Figure 4.12 corresponds to the program add(mul(input1, input2), input2).

As mentioned previously in section 3.3 k-trees are a tree representation used in enumeration-based

program synthesis due to its ability of representing every possible program for a given DSL. Therefore,

k-trees are the representation used in PUFS. A k-tree is a tree of depth d, where every internal node

has exactly k children and every leaf node is at depth d.

For the current DSL supported by PUFS, the maximum arity among all DSL constructs is 3, meaning

every k-tree will have 3 children, as shown in Figure 4.13.

In order to enumerate the possible programs using k-trees, the synthesizer encodes the trees as an

SMT formula. A complete program can be extracted from a model of the SMT formula. A model that
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satisfies that formula represents the assignment of a symbol of the given DSL to each node in the trees.

Within the possible tree encoding approaches, we have selected the line-based encoding.

In the line-based encoding, a program is represented using a sequence of trees of depth 1, where

each tree represents one operation of the program, as in an imperative language. PUFS uses an

adaptation of the line-based encoding presented by Orvalho et. al. [21]. A program representing a flow

with Assign nodes only can be seen as a sequence of operations, therefore, we want to fill each hole

using a k-tree rather than one single k-tree to represent the whole program, as illustrated in Figure 4.14.

However, when it comes to flows with If nodes that does not apply, and for that same reason we use

an adaptation of the encoding instead of the original one. Furthermore, the trees are enumerated in

increasing depth until a solution is found or until a timeout is reached.

In the following sections we describe the variables and constraints used to encode the line-based

tree representation used in our synthesizer.

4.3.3 Line-based Encoding with Conditionals

When considering flows with Assign nodes only, the previous encoding, described in section 3.3, would

be enough, since a program, with assignment expressions only, can be seen as program written in an

imperative language where each line would be the expression associated to each Assign node. However,

in the presence of If nodes, the structure of our programs is not so straight forward. Therefore, in order to

synthesize flows with conditional expressions we have implemented the following constraints in addition

to the ones presented in section 3.3.1.

Recall that D is the DSL, Prod(D) the set of production rules in D and Term(D) the set of terminal
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symbols in D. Furthermore, Types(D) represents the set of types used in D and Type(s) the type

of symbol s ∈ Prod(D) ∪ Term(D). If s ∈ Prod(D), then Type(s) corresponds to the return type of

production rule s.

Consider Σ the set of symbols used in the program. Besides the production rules and terminal

symbols, there is one additional symbol ret for each line in the program. Let Ret = {reti : 1 ≤ i ≤ n}

represent the set of return symbols in the program, then Σ = Prod(D) ∪ Term(D) ∪Ret.

Furthermore, each symbol is assigned a unique positive identifier. Let id : Σ → N0 be a one-to-one

mapping function that maps each symbol in Σ to a unique positive identifier and tid : Types(D)→ N0 be

a one-to-one mapping function that maps each symbol type to a unique positive identifier. Finally, since

some operations in the DSL have a smaller arity than k, the empty symbol ε is introduced, so that every

leaf node has an assigned symbol. We assume id(ε) = 0.

Encoding variables. Consider a sketch with n holes to fill, where the maximum arity of the operators

used in the expressions is k, and each hole will be filled using a line, we have the following variables:

• O = {opi : 1 ≤ i ≤ n} : each variable opi represents the production rule used in line i.

• T = {ti : 1 ≤ i ≤ n} : each variable ti represents the return type of the expression in line i.

• A = {aij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} : each variable aij represents the symbol corresponding to

argument j in line i.

To ensure the enumerated programs are well-typed we need to add the following constraints.

Operations constraints. The operations in each line must be production rules.

∀ 1 ≤ i ≤ n :
∨

p∈Prod(D)

opi = id(p) (4.2)

If a node i corresponds to an If node, then the line used to fill that node’s hole must be a production

rule for which the return type is Boolean. Let BooleanProd(D) be the set of such production rules that

appear in the DSL D, and HoleType(i) the node type of hole i.

∀ 1 ≤ i ≤ n : HoleType(i) = If =⇒
∨

p∈BooleanProd(D)

opi = id(p) (4.3)

The return type of each line is the return type of its production rule.

∀ 1 ≤ i ≤ n, p ∈ Prod(D) : opi = id(p) =⇒ ti = tid(Type(p)) (4.4)

Given a sketch with more than one hole to fill, the arguments of an operation i used in a hole must

be either terminal symbols or return symbols from previous holes.
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Arguments. Given a sketch with more than one hole to fill, the arguments of an operation i used in a

hole must be either terminal symbols or return symbols from previous holes.

However, if the sketch to be completed has If nodes, there will be more than a single execution path,

so, the results of an operation can only be used within the following operations of the same execution

branch. Therefore, we have the following constraint. Let PreviousHoles(i) be the set of lines used in

previous holes from the same execution path as node i, excluding lines that are used to fill If nodes.

∀ 1 ≤ i ≤ n, r ∈ PreviousHoles(i), 1 ≤ j ≤ k :
∨

s∈Term(D) ∪ retr:r<i

aij = id(s) (4.5)

The arguments of an operation i must have the same types as the parameters of the production rule

used in the operation. Let Type(p, j) be the type of parameter j of production rule p, where p ∈ Prod(D).

If j > arity(p) then T (p, j) = ε. Hence, there are the following constraints when a return symbol is used

as an argument of an operation:

∀ 1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p), 1 ≤ r < i :

((opi = id(p)) ∧ (aij = id(retr))) =⇒ (tr = tid(Type(p, j)))
(4.6)

A terminal symbol t ∈ Term(D) cannot be used as argument j of an operation i if it does not have

the correct type:

∀ 1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p),

s ∈ {r ∈ Term(D) : Type(r) 6= Type(p, j)} :

(opi = id(p)) =⇒ ¬(aij = id(s))

(4.7)

The arity of an operation i can be smaller than k, in that case, the empty symbol ε is assigned to the

arguments above the productions arity.

∀ 1 ≤ i ≤ n, p ∈ Prod(D), arity(p) < j ≤ k :

(opi = id(p)) =⇒ (aij = id(ε))
(4.8)

Output. Let Type(out) be the type of the program’s output and Pout ⊆ Prod(D) be the subset of pro-

duction rules which return type equal to Type(out), i.e., Pout = {p ∈ Prod(D) : Type(p) = Type(out)}.

Given that a flow can have multiple nodes pointing to an End node, there is more than one possible

output result. Consider L the set of all lines corresponding to nodes that point to an End node. Since

the last line of a program corresponds to the program’s output, the operation of each one of the lines in

L must be one the productions in Pout.

∀ l ∈ L :
∨

p∈Pout

(opl = id(p)) (4.9)
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Input. Let I be the set of symbols provided as input by the user. Each input must be used at least

once:

∀s ∈ I :
∨

1≤i≤n

∨
1≤j≤k

(aij = id(s)) (4.10)

Lines once or more times. We are interested in enumerating programs where the result of an opera-

tion can be used in the following operations 1 or more times. Hence, we have the following constraint.

∀retr ∈ Ret(D) :

 ∑
r<i≤n,1≤j≤k

(aij = id(retr))

 >= 1 (4.11)

4.3.4 Decider

Once the sketch is filled with the corresponding expressions in each node, the decider evaluates if the

resulting program satisfies the specification. To perform this evaluation we developed a flow interpreter,

which takes a graph that represents a flow and interprets the resulting program using the input values

to obtain the corresponding outputs of that program. If, for every input, the program returns the corres-

ponding output from the specification the decider considers that a solution was found. Otherwise, a new

sketch is generated to be filled by the synthesizer. This process is repeated until a solution is found or

until a time limit is reached.
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Chapter 5

Evaluation

This chapter evaluates the performance of the synthesizer presented in Chapter 4. The synthesizer is

evaluated in terms of its running time and number of instances solved. We provide a brief description

of the benchmarks provided, followed by a description of the pre-selection and categorization of the

benchmarks in Section 5.1. Finally, Section 5.2 provides the evaluation results and the corresponding

analysis.

5.1 Examples Generation

In order to evaluate our PBE-based synthesizer, we need to get a set of benchmarks in the OutSystems

platform that represent the type of functions we intend to synthesize. The set of examples we use consist

of a set of real-world examples of pure functions implemented the OutSystems Platform.

As mentioned before, the main goal is to facilitate the implementation of pure functions, which are

functions that have no side effects and their outputs are determined by its inputs, similarly to other types

of functions. For the purpose of this thesis, we will only consider functions consisting of just Assign and

If nodes.

However, this set of examples needs to go through a pre-selection process so that our set of ex-

amples consists only of supported examples by the current DSL. The pre-selection process is further

described in subsection 5.1.1. Finally, once the examples are pre-selected and categorized we use an

interpreter (subsection 4.3.4) to sample the input-output examples to be used as specification for our

synthesizer.

5.1.1 Examples Pre-selection

The examples consist of a set of flows that only have nodes of type Start, End, Assign and If. However,

the examples must fulfill some requirements in order to be useful examples, so we needed to perform

some categorization in order to select the appropriate ones to represent the cases we wish to synthesize.

The mentioned requirements are the following:
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Table 5.1: Total for each pre-selection category and overlapping of each category

Pre-selection category # Instances

Initial number of flows 13959

Loops 861

Out-of-scope variable types 8825

Out-of-scope functions 4655

Loops and out-of-scope variables types 703

Loops and out-of-scope functions 275

Out-of-scope variables types and out-of-scope functions 2974

Loops and out-of-scope variables types and out-of-scope functions 249

Total number of flows after pre-selection 3321

• No loops. Even though these flows do not have Loop type nodes there can still be loops using If

nodes, as shown in figure 5.1.

• All function calls that appear in the flow are calls to built-in functions. Besides filtering flows with

loops, we also found that some flows were using variables whose type did not belong to the vari-

ables basic types available in the platform along side with the use of functions that were not the

builtin functions provided by the platform, but functions developed by the user. Given that, these

flows will not be used as examples for the synthesizer.

• All variables that appear in the flow are of the basic types supported by the synthesizer: integer,

decimal, text and boolean.

In order to develop a better understanding of the obtained benchmarks, table 5.1 presents the number

of instances for each one of the pre-selection categories along with the number of instances that overlaps

between each of them. Also, the Venn diagram in figure 5.2 provides a visual representation of the exact
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number of instances for each of the overlapping categories along side the number of flows for each

exclusive category.

5.1.2 Examples Categorization

Given that there exists significant variety within the selected instances, it is important to perform some

sort of categorization in order to better evaluate the synthesizer, and also to be able to have a better

sense of the main characteristics of the data being used.

The flows were categorized using 3 characteristics:

• Size of the flow.

• Flows with/without If nodes.

• Flows with the Built-In Types and Built-In Functions supported by the synthesizer.

The first category is based on the size of the flows, i.e., the flows are categorized based on the

number of nodes. This is important, given that, the greater the number of nodes in a flow, the more

operations it can perform, and, consequently the search space will also be more extensive. The sizes

go from 3 to 187 nodes. The plot in figure 5.3 provides a more descriptive view of all the sizes found and

the number of instances for each one of the sizes.

The second category separates the flows based on the presence of If nodes, i.e., flows containing If

nodes are separated from those that do not. The rationale behind this categorization is that programs

with control structures are expected to be much harder to synthesize due to the introduction of branching.

Table 5.2 provides a more descriptive view of the number of instances with If nodes and without non-If

nodes and among those, which are considered within the scope of our synthesizer, meaning that these

instances only use built-in types and built-in functions supported by the platform.

It is possible to verify that there is a significant difference between the total number of valid instances

and the total number of instances in general. This difference corresponds to the excluded instances cor-
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Table 5.2: Number of instances for each category of flows with conditional nodes and without conditional
nodes

# Instances # Valid Instances Total

Non-conditionals 9454 2217 11671

Conditionals 4505 1104 5609

Total 13959 3321

Table 5.3: Number of instances that are supported by the synthesizer for each category of flows with
conditional nodes and without conditional nodes

# Supported
Instances

# Not Supported
Instances Total

Non-conditionals 995 1222 2217

Conditionals 471 633 1104

Total 1466 1855

responding to flows that contain functions in their expressions that do not correspond to built-in functions

of the platform, i.e., the functions correspond to functions created by the users and used in the flows and

as such they are beyond the scope of our synthesizer.

The third and final category contains the flows that are supported by the current DSL being used by

the synthesizer. As it was mentioned in section 4.1, the OutSystems platform provides a set of built-in

types1 and built-in functions2 such as mathematical computations, data transformations, among others,

which can be used within OutSystems expressions. However, the synthesizer does not support all of

them, for now, it supports the Integer, Decimal, Text and Boolean built-in types and the set of Math Built-

In Functions, Numeric Built-In Functions and some of the Text Built-In Functions, described previously

in table 4.1. Table 5.3 provides a view over the total number of flows, once the selection of instances

supported by the current DSL is done, for instances having conditional nodes and instances that only

have assignment nodes.

We noticed that, among the selected benchmarks, there exist several repeated instances, i.e., several

pure functions with exact same behavior/semantics. Assume we have 40 instances that calculate the

length of a string given as input. Once we evaluate our synthesizer, those repeated instances would

induce bias in the results of the evaluation. Therefore, we have performed one last selection performed

manually consisting of removing repeated instances among the examples. Table 5.4 provides the final

counting of the instances used for evaluating the synthesizer corresponding to a total of 566 instances.

5.1.3 Generation of input-output examples

As mentioned in the previous section, the examples of flows available to test our synthesizer consist of

real world examples of flows in the OutSystems platform corresponding to pure functions, developed by

1https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Data/Data_Types/

Available_Data_Types
2https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Logic/Built-in_Functions
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Table 5.4: Total number of instances that are supported by the synthesizer without repeated instances

Non-conditionals Conditionals Total

# Supported
Instances 309 257 566

Check
input
types

Generate
input

values

Execute
flow

Generate
output
values

Flow Interpreter

Example
Flow

Input-Output
Example

input1 = Integer
input2 = Integer

input1 = 10
input2 = 2

aux=input1*32
output=aux+input2

output=322 input = [10, 2], output = 322
input = [20, 3], output = 643
input = [1, 2], output = 34
input = [0, 3] , output = 3

Figure 5.4: Example flows interpreter.

users. However, we need input-output examples and not the flows, so we need to execute the flows in

order to obtain the corresponding input-output pairs.

In order to to execute the flows we used the flow interpreter from section 4.3.4, which takes an action

flow in an intermediate representation, and then computes the respective output in order to generate the

input-output examples. The process of generating these instances has 4 stages, as illustrated in figure

5.4:

1. Check input types

2. Generation of input values

3. Execution of the flow

4. Generation of output values

Check input types and generation of the input values Upon receiving an example flow, the inter-

preter checks the input variables and its types, so that it generates random values for each variable

according to its type.
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Execution of the flow and generation of output values Once the values are generated, the inter-

preter takes the inputs and interprets the program in order to obtain the corresponding output values.

This approach allows to perform the generation of examples for most cases, however for instances

that should cover edge cases, this generation of examples was performed manually in order to obtain

the correct solution in terms of matching the user’s intent.

5.2 Experimental Results

The goal is to evaluate how many pure functions PUFS is able to synthesize and how quickly. We also

evaluate if providing additional information, such as constants to be used in the program, has a significant

impact in the performance. In this section we provide the results of the evaluation for instances using

assignments only. Although we present the encoding to synthesize flows containing If nodes in Section

4.3.3, we were not able to retrieve the results for instances that use conditional nodes.

Implementation We developed PUFS on top of the TRINITY [17] synthesis framework. The syn-

thesizer is implemented in Python 3.6 and it uses the Z3 SMT solver [4] with theory of Linear Integer

Arithmetic to solve the SMT formulas generated during the synthesis process. The results presented in

this section ere obtained using an Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz, with 16GB of RAM,

running Ubuntu 18.04 LTS, with time limit of 300 seconds.

5.2.1 Evaluation

We want to evaluate our synthesizer in terms of runtime and how many instances we can solve for a

given time frame. Additionally, we evaluate the impact of providing constants along with the input-output

examples.

We present results for the synthesizer presented in Chapter 4 with the following configurations. For

each instance we ran the synthesizer with 5 input-output examples. For instances in which the solution

is expected to use constants we provided the corresponding constants in the specification file along

with the input-output examples. These constants consist of integer, decimal and string values. We ran

the synthesizer for instances with constants and with no constants provided. This is due to the fact

that the synthesizer is not able to synthesize programs with constants for now, so solutions that require

constants would not be found using the present configuration unless these were provided as one of the

input values.

Table 5.5 shows the results of both approaches in terms of the number of instances solved and

limit time considered. We consider an instance solved if the synthesized program satisfies the input-

output examples. However, even though it is considered solved it does not mean it is correct, i.e. it

might not match the intended solution. Matching the user intent means that the solution must satisfy the

specification as well as capturing the user intent (this verification is performed manually). For this same

reason some of the instances example values had to be manually generated in order to obtain the most
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Table 5.5: Comparison of number of instances solved for the different timeout values.

Timeout(s) 60 120

Without constants 83 115

With constants 103 121

correct solution possible, as it was mentioned in 5.1.3.

5.2.2 Discussion

From the presented results in plot 5.5, we can verify that as the complexity of the program increases so

does the time to find solution. As the enumeration process is done in an ascending order of size of the

sketch, the bigger the sketch we want to complete the longer it will take to complete it and find a solution

that satisfies the specifications. We need to take into account that the bigger the size of the program we

are synthesizing, the longer it will take for the sketch completion stage to be completed, due to the fact

that the number of holes we wish to fill increases the number of expressions to be synthesized.

As each hole is filled with an expression in the form of a k-tree and as these are also enumerated

in ascending complexity, in terms of depth, the enumeration process becomes more complex and more

time consuming due to the fact that as the program space increases so does the time to perform the

search over the space in order to find the desired program. Therefore the use of pruning techniques can

be an very advantageous addition to the solution in order to reduce the space of programs and find a

solution in a smaller time frame.

However, from the comparison between the different timeout limits and the number of instances that

the synthesizer was able to solve during each of those time intervals, we can verify that the difference in

the time given does not have a significant impact on the number of instances solved, as the time frame

increases, especially when using constants.

Regarding the use of constants, from plot 5.5 and table 5.5, we can verify that the use of constants

has a significant impact in the number of solved instances, which is more evident in instances solved

under 1 minute. This impact would be expected due to the fact that the synthesizer does not enumerate

candidate programs containing constants, unless these are provided by the user. However, the addition

of constants also increases the time it takes to find a solution, due to the fact that more candidate

programs are enumerated. Which would explain the results for the timeout of 2 minutes, illustrated in

plot 5.5, where we verify that the number of solved instances without constants is almost the same

as when providing the constants. For this particular case, it is important to evaluate if the trade-off

between the additional time spent enumerating more programs, compensates by finding a solution in a

reasonable time.

Another aspect to have in consideration is the number of solutions that do not correspond to the

intended one. The use of constants, especially when used in conditional expressions to limit a range of

values, can lead to solutions that do not match the expected one, if the provided input-output examples

do not cover the limits of that range.
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Figure 5.5: Number of instances solved throughout time for a timeout of 120 seconds.

Finally, in chapter 4, we have presented a proposal of an adaptation of the encoding developed by

Orvalho et. al. [21], however we were not able to retrieve results for that encoding, and for that reason

those results are not provided in this chapter as mentioned in the beginning.
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Chapter 6

Conclusions and Future Work

In this thesis, we tackle the problem of synthesizing pure functions from examples in the OutSystems

platform. We focus on functions that manipulate integers, decimals, text and Booleans. The OutSystems

platform main goal is to provide an easier and faster experience in development and integration of web

and mobile applications. This platform gives users, with no programming background, a tool that allows

them to develop an application with no need for specific knowledge, and also provides a faster and

automated approach to users with more specialized knowledge. Therefore, it is in our interest to provide

a simple approach for the user to be able to generate the pure functions with only a small number

of examples in just one click. These type of functions come across very often, in the form of data

wrangling tasks, among others. Having such a repetitive type of task might become tedious and add

more complexity to the overall tasks, which leads to a need of automating this type of functions.

In this dissertation we presented a novel approach to synthesize pure functions in the form of flows in

the OutSystems platform, from a set of input-output examples. We survey the state of the art in program

synthesis and implemented PUFS, a PBE-based pure function synthesizer. The synthesizer employs

the use of sketches as the underlying structure of our programs and enumerative search, where SMT is

used to search the program space. We tested PUFS in a set of real-world examples of pure-functions

developed in the OutSystems platform, from which the results of our experiments revealed we are able

to synthesize 33% of the benchmarks within less then a minute. However, the results also revealed that

in a significant amount of examples we were not able to find a solution within a limited amount of time

due to the dimension of the program space or due to an incomplete specification.

Given the experimental results for flows with assignments only, we believe the current solution could

benefit from some pruning techniques, in order to reduce the search space and possibly overcome

the time limitation to find a solution. As follow up work, it would be important to verify the results for

the adaptations of the encoding introduced in Chapter 4 to evaluate if the approach provides favorable

results.

Finally, it would also be interesting to use a ranking technique as an ambiguity resolution technique in

order to guide the synthesizer into finding a program that is more likely to lead to a solution that satisfies

both the specification and corresponds to the user intent. Moreover, it is important to explore if this
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approach scales if the DSL was to be extended, given that it would be interesting to extend the current

DSL to support more data types and more functions. Besides the DSL it would be particularly interesting

to support other type of nodes that allow other types of operations.

43



44



Bibliography

[1] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to

write programs. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings, 2017. URL https://openreview.net/

forum?id=ByldLrqlx.

[2] Y. Chen, R. Martins, and Y. Feng. Maximal multi-layer specification synthesis. In M. Dumas,

D. Pfahl, S. Apel, and A. Russo, editors, Proceedings of the ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, pages 602–612. ACM, 2019.

ISBN 978-1-4503-5572-8. doi: 10.1145/3338906.3338951. URL https://dl.acm.org/citation.

cfm?id=3338906.

[3] A. Cohen and M. T. Vechev, editors. Proceedings of the 38th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017,

2017. ACM. ISBN 978-1-4503-4988-8. doi: 10.1145/3062341.

[4] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan and J. Re-

hof, editors, Tools and Algorithms for the Construction and Analysis of Systems, 14th Interna-

tional Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-

ings, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008. doi:

10.1007/978-3-540-78800-3\ 24. URL https://doi.org/10.1007/978-3-540-78800-3_24.

[5] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. R, and S. Roy. Program

synthesis using natural language. In L. K. Dillon, W. Visser, and L. A. Williams, editors, Proceedings

of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May

14-22, 2016, pages 345–356. ACM, 2016. doi: 10.1145/2884781.2884786. URL https://doi.

org/10.1145/2884781.2884786.

[6] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P. Kohli. Robustfill: Neural pro-

gram learning under noisy I/O. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th

International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August

2017, volume 70 of Proceedings of Machine Learning Research, pages 990–998. PMLR, 2017.

URL http://proceedings.mlr.press/v70/devlin17a.html.

45

https://openreview.net/forum?id=ByldLrqlx
https://openreview.net/forum?id=ByldLrqlx
https://dl.acm.org/citation.cfm?id=3338906
https://dl.acm.org/citation.cfm?id=3338906
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2884781.2884786
https://doi.org/10.1145/2884781.2884786
http://proceedings.mlr.press/v70/devlin17a.html


[7] Y. Feng, R. Martins, J. V. Geffen, I. Dillig, and S. Chaudhuri. Component-based synthesis of table

consolidation and transformation tasks from examples. In Cohen and Vechev [3], pages 422–436.

ISBN 978-1-4503-4988-8. doi: 10.1145/3062341.3062351.

[8] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps. Component-based synthesis for complex

apis. In G. Castagna and A. D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN Sym-

posium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,

pages 599–612. ACM, 2017. ISBN 978-1-4503-4660-3. URL http://dl.acm.org/citation.cfm?

id=3009851.

[9] Y. Feng, R. Martins, O. Bastani, and I. Dillig. Program synthesis using conflict-driven learning.

In J. S. Foster and D. Grossman, editors, Proceedings of the 39th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June

18-22, 2018, pages 420–435. ACM, 2018. doi: 10.1145/3192366.3192382.

[10] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In T. Ball

and M. Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 317–330.

ACM, 2011. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.1926423. URL http://dl.acm.org/

citation.cfm?id=1926385.

[11] S. Gulwani. Synthesis from examples: Interaction models and algorithms. In A. Voronkov, V. Negru,

T. Ida, T. Jebelean, D. Petcu, S. M. Watt, and D. Zaharie, editors, 14th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2012, Timisoara, Romania,

September 26-29, 2012, pages 8–14. IEEE Computer Society, 2012. doi: 10.1109/SYNASC.2012.

69. URL https://doi.org/10.1109/SYNASC.2012.69.

[12] S. Gulwani. Programming by examples: applications, algorithms, and ambiguity resolution. In

W. Vanhoof and B. Pientka, editors, Proceedings of the 19th International Symposium on Principles

and Practice of Declarative Programming, Namur, Belgium, October 09 - 11, 2017, page 2. ACM,

2017. ISBN 978-1-4503-5291-8. doi: 10.1145/3131851.3131853. URL https://doi.org/10.

1145/3131851.3131853.

[13] S. Gulwani and P. Jain. Programming by examples: PL meets ML. In B. E. Chang, editor,

Programming Languages and Systems - 15th Asian Symposium, APLAS 2017, Suzhou, China,

November 27-29, 2017, Proceedings, volume 10695 of Lecture Notes in Computer Science, pages

3–20. Springer, 2017. doi: 10.1007/978-3-319-71237-6\ 1. URL https://doi.org/10.1007/

978-3-319-71237-6_1.

[14] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs. In M. W. Hall

and D. A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages

62–73. ACM, 2011. ISBN 978-1-4503-0663-8. doi: 10.1145/1993498.1993506.

46

http://dl.acm.org/citation.cfm?id=3009851
http://dl.acm.org/citation.cfm?id=3009851
http://dl.acm.org/citation.cfm?id=1926385
http://dl.acm.org/citation.cfm?id=1926385
https://doi.org/10.1109/SYNASC.2012.69
https://doi.org/10.1145/3131851.3131853
https://doi.org/10.1145/3131851.3131853
https://doi.org/10.1007/978-3-319-71237-6_1
https://doi.org/10.1007/978-3-319-71237-6_1


[15] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foundations and Trends in Programming

Languages, 4(1-2):1–119, 2017. doi: 10.1561/2500000010.

[16] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based program syn-

thesis. In J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, editors, Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,

South Africa, 1-8 May 2010, pages 215–224. ACM, 2010. ISBN 978-1-60558-719-6.

[17] R. Martins, J. Chen, Y. Chen, Y. Feng, and I. Dillig. Trinity: An extensible synthesis framework for

data science. PVLDB, 12(12):1914–1917, 2019. doi: 10.14778/3352063.3352098. URL http:

//www.vldb.org/pvldb/vol12/p1914-martins.pdf.

[18] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov, R. Singh, B. G. Zorn, and S. Gul-

wani. User interaction models for disambiguation in programming by example. In C. Latulipe,

B. Hartmann, and T. Grossman, editors, Proceedings of the 28th Annual ACM Symposium on

User Interface Software & Technology, UIST 2015, Charlotte, NC, USA, November 8-11, 2015,

pages 291–301. ACM, 2015. doi: 10.1145/2807442.2807459. URL https://doi.org/10.1145/

2807442.2807459.

[19] V. Murali, L. Qi, S. Chaudhuri, and C. Jermaine. Neural sketch learning for conditional program

generation. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,

BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL

https://openreview.net/forum?id=HkfXMz-Ab.

[20] M. I. Nye, L. B. Hewitt, J. B. Tenenbaum, and A. Solar-Lezama. Learning to infer program

sketches. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International

Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,

volume 97 of Proceedings of Machine Learning Research, pages 4861–4870. PMLR, 2019. URL

http://proceedings.mlr.press/v97/nye19a.html.

[21] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Manquinho. Encodings for

enumeration-based program synthesis. In T. Schiex and S. de Givry, editors, Principles and

Practice of Constraint Programming - 25th International Conference, CP 2019, Stamford, CT,

USA, September 30 - October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Com-

puter Science, pages 583–599. Springer, 2019. doi: 10.1007/978-3-030-30048-7\ 34. URL

https://doi.org/10.1007/978-3-030-30048-7_34.

[22] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Manquinho. SQUARES : A SQL

synthesizer using query reverse engineering. Proc. VLDB Endow., 13(12):2853–2856, 2020. URL

http://www.vldb.org/pvldb/vol13/p2853-orvalho.pdf.

[23] O. Polozov and S. Gulwani. Flashmeta: a framework for inductive program synthesis. In J. Ald-

rich and P. Eugster, editors, Proceedings of the 2015 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of

47

http://www.vldb.org/pvldb/vol12/p1914-martins.pdf
http://www.vldb.org/pvldb/vol12/p1914-martins.pdf
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/2807442.2807459
https://openreview.net/forum?id=HkfXMz-Ab
http://proceedings.mlr.press/v97/nye19a.html
https://doi.org/10.1007/978-3-030-30048-7_34
http://www.vldb.org/pvldb/vol13/p2853-orvalho.pdf


SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 107–126. ACM, 2015. ISBN

978-1-4503-3689-5. URL http://dl.acm.org/citation.cfm?id=2814270.

[24] K. Shi, J. Steinhardt, and P. Liang. Frangel: Component-based synthesis with control structures.

CoRR, abs/1811.05175, 2018. URL http://arxiv.org/abs/1811.05175.

[25] K. Shi, J. Steinhardt, and P. Liang. Frangel: component-based synthesis with control structures.

PACMPL, 3(POPL):73:1–73:29, 2019.

[26] R. Singh and S. Gulwani. Predicting a correct program in programming by example. In D. Kroening

and C. S. Pasareanu, editors, Computer Aided Verification - 27th International Conference, CAV

2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture

Notes in Computer Science, pages 398–414. Springer, 2015. ISBN 978-3-319-21689-8.

[27] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, Berkeley, CA, USA, 2008.

AAI3353225.

[28] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu. Programming by sketching for bit-

streaming programs. In V. Sarkar and M. W. Hall, editors, Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago, IL, USA, June 12-15,

2005, pages 281–294. ACM, 2005. ISBN 1-59593-056-6. doi: 10.1145/1065010.1065045.

[29] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat. Combinatorial sketching

for finite programs. In J. P. Shen and M. Martonosi, editors, Proceedings of the 12th Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, pages 404–415. ACM, 2006. ISBN

1-59593-451-0.

[30] C. Wang, A. Cheung, and R. Bodı́k. Synthesizing highly expressive SQL queries from input-output

examples. In Cohen and Vechev [3], pages 452–466. ISBN 978-1-4503-4988-8. doi: 10.1145/

3062341.

[31] X. Ye, Q. Chen, X. Wang, I. Dillig, and G. Durrett. Sketch-driven regular expression generation

from natural language and examples. Trans. Assoc. Comput. Linguistics, 8:679–694, 2020. URL

https://transacl.org/ojs/index.php/tacl/article/view/2135.

[32] S. Zhang and Y. Sun. Automatically synthesizing SQL queries from input-output examples. In

E. Denney, T. Bultan, and A. Zeller, editors, 2013 28th IEEE/ACM International Conference on Auto-

mated Software Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, pages

224–234. IEEE, 2013. URL https://ieeexplore.ieee.org/xpl/conhome/6684409/proceeding.

48

http://dl.acm.org/citation.cfm?id=2814270
http://arxiv.org/abs/1811.05175
https://transacl.org/ojs/index.php/tacl/article/view/2135
https://ieeexplore.ieee.org/xpl/conhome/6684409/proceeding

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivating Example
	1.2 Contributions
	1.3 Organization

	2 Fundamental Concepts
	2.1 Program Synthesis
	2.1.1 User Intent
	2.1.2 Program Space
	2.1.3 Search Techniques

	2.2 Satisfiability Modulo Theories

	3 Related Work
	3.1 Inductive Synthesis
	3.1.1 Programming-by-Example
	3.1.2 Ambiguity Resolution

	3.2 Program Sketches
	3.2.1 Sketch-based Program Synthesis
	3.2.2 Counterexample Guided Inductive Synthesis

	3.3 Enumeration-Based Program Synthesis
	3.3.1 Line-based Encoding
	3.3.2 Encoding Variables
	3.3.3 Constraints


	4 Pure Function Synthesis
	4.1 Problem Formulation
	4.2 Sketch Generation
	4.3 Sketch Completion
	4.3.1 Input-Output Examples and Domain Specific Language (DSL)
	4.3.2 K-Trees Enumeration
	4.3.3 Line-based Encoding with Conditionals
	4.3.4 Decider


	5 Evaluation
	5.1 Examples Generation
	5.1.1 Examples Pre-selection
	5.1.2 Examples Categorization
	5.1.3 Generation of input-output examples

	5.2 Experimental Results
	5.2.1 Evaluation
	5.2.2 Discussion


	6 Conclusions and Future Work
	Bibliography

